Снимок-экрана-2023-11-03-в-19.05.39

Антительное воздействие на опухолевые клетки

Исследователи во главе с командой из Медицинской школы Университета Дьюка разработали подход к лечению рака, который они описывают как более точный, долгосрочный и менее токсичный, чем существующие методы лечения. Новая технология использует димерные антитела IgA (dIgA) для нацеливания и уничтожения молекул, способствующих развитию опухоли, находящихся глубоко внутри раковых клеток, которые долгое время ускользали от существующих вариантов лечения, включая терапию антителами IgA.

Ранние эксперименты команды на мышах с раком легких и толстой кишки показали, что лечение с использованием антител приводило к заметному снижению роста опухоли и было связано с минимальными побочными эффектами. «Это исследование, подтверждающее концепцию, но результаты очень многообещающие», — сказал исследователь-иммунолог Хосе Рамон Конехо-Гарсия, доктор медицинских наук, научный сотрудник Университета Дьюка по науке и технологиям в Департаменте интегративной иммунобиологии. «Мы считаем, что это лечение можно использовать для борьбы с широким спектром раковых мутаций».

Конехо-Гарсия и его коллеги сообщили о своих исследованиях в области иммунологии в статье под названием « Нацеливание на внутриклеточные онкопротеины с помощью димерного IgA способствует изгнанию из цитоплазмы и иммуноопосредованному контролю эпителиального рака ». В своей статье команда пришла к выводу: «Наши результаты дают обоснование для разработки терапевтических средств на основе dIgA для нейтрализации различных внутриклеточных антигенов при раке человека и других заболеваниях».

«KRAS считается наиболее распространенным мутировавшим онкогеном, вызывающим рак у человека», — пишут авторы. «Мутации KRAS особенно часто встречаются при раке поджелудочной железы, колоректальном раке, немелкоклеточном раке легких и раке эндометрия, общее количество случаев которых составляет более 50 000 случаев ежегодно». Одна мутация KRAS, KRAS G12D (KRAS G12D ), является известным возбудителем самых смертоносных видов рака.

Существующие методы лечения рака могут оказаться палкой о двух концах: они не только убивают раковые клетки, но и наносят ущерб здоровым клеткам. Недавно опубликованное исследование авторов было сосредоточено на использовании определенного типа антител, называемого димерным IgA (dIgA). В то время как мономерный IgA обнаруживается в сыворотке, на поверхности слизистых оболочек, IgA преимущественно обнаруживается в виде димера и связывается с полимерным рецептором иммуноглобулина (PIGR), экспрессируемым на поверхности эпителиальных клеток слизистой оболочки. Это связывание запускает процесс, называемый трансцитозом, который транспортирует комплекс PIGR:антитело через эпителиальные клетки в жидкости слизистой оболочки. Ранее команда показала, что PIGR экспрессируется при некоторых видах рака у человека и обеспечивает трансцитоз dIgA через опухолевые клетки. Для своей недавно опубликованной работы исследователи разработали рекомбинантный dIgA, нацеленный на KRAS G12D .

Эксперименты in vitro показали, что рекомбинантный мутационно-специфичный dIgA может связываться с мутировавшим KRAS G12D в раковых клетках, нейтрализуя его, но также выводя за пределы опухолевой клетки посредством трансцитоза, останавливая рост опухоли. «В совокупности эти результаты показывают, что dIgA, проникающий в опухолевые клетки, действительно может воздействовать на специфические мутации KRAS внутри опухолевых клеток (например, рака яичников), что приводит к внутриклеточному снижению уровней и изгнанию онкодрайвера за пределы опухолевой клетки, без очевидных эффектов в немутированных эпителиальных клетках KRAS. клетки», — написали они.

При тестировании на мышах KRAS G12D -специфическое антитело оказалось более эффективным в уменьшении раковых опухолей, чем текущие методы лечения в клинических испытаниях. Лечение малыми молекулами часто с трудом достигает определенных раковых клеток, имеет короткий период полураспада и может вызывать побочные эффекты. «Эти эксперименты подтверждают способность dIgA, проникающего в опухолевые клетки, специфически воздействовать на мутировавшие онкодрайверы внутри клеток карциномы in vivo», — заявили ученые.

Кроме того, исследователи сообщили об аналогичных результатах in vitro, используя dIgA, нацеленный на внутриклеточную раковую мутацию IDH1 R132H, обнаруженную глубоко внутри раковых клеток.

По мнению исследователей, антитела IGA имеют потенциал для использования в качестве таргетной терапии против устойчивых мутаций, вызывающих распространенные агрессивные виды рака, особенно эпителиальный рак, такой как рак яичников, кожи, толстой кишки, шейки матки, простаты, молочной железы и легких. «Вместе с данными по нацеливанию на опухоли легких с мутацией KRAS эти результаты подтверждают возможность нацеливания на карциномы множественного гистологического происхождения и различных мутировавших онкодрайверов с использованием антиген-специфического dIgA», — заявили исследователи. «Учитывая, что PIGR экспрессируется в большинстве эпителиальных злокачественных новообразований, но только на более низких уровнях при неэпителиальном раке, этот механизм может быть актуален для большинства эпителиальных раков человека. Сюда следует включать устойчивые опухоли, такие как рак поджелудочной железы или мелкоклеточный рак легких, которые, как показывают наши данные, квазиуниверсально экспрессируют PIGR».

«Это новый способ воздействия на опухолевые клетки с использованием антител, которые исключительно специфичны к точечным мутациям, или молекул, которые действительно опухолеспецифичны», — сказал Конехо-Гарсия. «Нейтрализуя их и гарантируя, что эти молекулы, способствующие развитию опухоли, будут изгнаны за пределы клетки, мы можем остановить рост опухоли».

Ученые изо всех сил пытались нацелиться на мутировавший белок KRAS, но новые результаты показывают, что уникально разработанное антитело может достигать этих внутриклеточных молекул. Результаты предлагают стратегию разработки будущих методов лечения рака, которые будут более адаптированы, уменьшая вред здоровым клеткам и улучшая качество жизни пациентов. Исследователи совершенствуют антитело, чтобы облегчить его производство и введение пациентам, с целью в конечном итоге протестировать его в клинических испытаниях.

Более того, Конехо-Гарсия отметила: «Иммунная система — единственная система в организме, которая обладает двумя ключевыми свойствами, которые делают ее идеальной для лечения рака: специфичность и память». Иммунная система может целенаправленно нацеливаться на опухолевые клетки, а также запоминать эти клетки, чтобы организовать более эффективную атаку в случае возвращения рака.

Отмечая ограничения своих исследований, авторы предполагают, что в будущих исследованиях следует изучить, существуют ли другие часто мутирующие онкогены, такие как фосфатидилинозитол-3-киназа (PI3K) или трансформирующий штамм Ak (AKT), или иммуносупрессивные внутриклеточные пути, такие как индоламин-2,3-диоксигеназа 1. (IDO), можно более эффективно воздействовать на организм с помощью dIgA, чем с помощью низкомолекулярных ингибиторов. «Нацеливание, опосредованное dIgA, вместе или в сочетании с небольшими молекулами, может иметь существенные преимущества по сравнению с малыми молекулами: во-первых, наши результаты подчеркивают специфичность этого подхода», — прокомментировали они.

https://www.genengnews.com/news/cancer-proteins-deep-within-tumor-cells-targeted-by-dimeric-antibodies/

Повышение эффективности CAR-T-клеток

Исследователи обнаружили как повысить эффективность CAR-T-клеток, искусственных иммунных клеток, в борьбе с опухолями

Среди доступных методов иммунотерапии использование клеток «CAR-T» показало значительную эффективность при лечении некоторых видов рака крови, но только у половины пациентов. Основная причина этого — преждевременная дисфункция этих иммунных клеток, искусственно модифицированных in vitro.

Совместная исследовательская группа из университетов Женевы (UNIGE) , Лозанны (UNIL), университетских больниц Женевы (HUG) и университетской больницы Во (CHUV), которые являются частью Швейцарского онкологического центра Лемана (SCCL), определила метод для продления функциональности CAR-T-клеток. Подавив очень специфический метаболический механизм, команде удалось создать CAR-T-клетки с улучшенной иммунной памятью, способные гораздо дольше бороться с опухолевыми клетками.

Эти очень многообещающие результаты были недавно опубликованы в журнале Nature .

Иммунотерапия CAR-T-клеток включает в себя взятие иммунных клеток (обычно Т-лимфоцитов) от человека, страдающего раком, модификацию их в лаборатории для повышения их способности распознавать опухолевые клетки и борьбу с ними, а затем повторное введение их пациенту. Однако, как и в случае с другими видами иммунотерапии, многие пациенты не реагируют на лечение или возникают рецидивы.

«CAR-T-клетки должны быть массово размножены, прежде чем их можно будет вводить», — объясняет Матиас Венес, научный сотрудник, который координировал это исследование в лаборатории доктора Дениса Мильорини, медицинского факультета медицинского факультета UNIGE и кафедры онкологии. в ОБЪЕМЕ. «Но история болезни пациента в сочетании с процессом амплификации истощает клетки: они достигают состояния терминальной дифференцировки, которое ускоряет конец их жизненного цикла, не оставляя им времени действовать на протяжении».

Механизм, общий для раковых клеток и иммунных клеток.

В отсутствие кислорода раковые клетки прибегают к очень специфическому механизму выживания: они метаболизируют аминокислоту глютамин как альтернативный источник энергии посредством химической реакции, известной как «восстановительное карбоксилирование». «Иммунные и раковые клетки имеют довольно схожий метаболизм, что позволяет им очень быстро размножаться. Мы действительно обнаружили, что Т-клетки также используют этот механизм», — объясняет Элисон Жаккард, доктор философии. студент лаборатории профессора Пинг-Чих Хо на кафедре онкологии UNIL-CHUV и первый автор исследования.

Чтобы исследовать роль восстановительного карбоксилирования, ученые ингибировали этот механизм в CAR-T-клетках на мышиных моделях лейкемии и множественной миеломы, двух видов рака крови. «Наши модифицированные CAR-T-клетки нормально размножались и не теряли своей способности атаковать, что указывает на то, что восстановительное карбоксилирование для них не является необходимым», — резюмирует Матиас Венес.

Мыши, вылеченные с помощью CAR-T

Более того, мыши, получавшие такое лечение, практически излечились от рака, что значительно превзошло ожидания исследовательской группы. «Без восстановительного карбоксилирования клетки больше не дифференцируются так сильно и дольше сохраняют свою противоопухолевую функцию. И даже, и это суть нашего открытия, они имеют тенденцию трансформироваться в Т-лимфоциты памяти, тип иммунных клеток, которые сохраняют память об элементах опухоли, которые необходимо атаковать».

Т-лимфоциты памяти играют ключевую роль во вторичном иммунном ответе. Они сохраняют память о ранее встречавшихся патогенах и могут реактивироваться при их повторном появлении – как в случае с вирусом , так и в случае с опухолевыми патогенами – обеспечивая гораздо более длительную иммунную защиту. «Тот же принцип применим и к CAR-T-клеткам: чем больше количество клеток памяти, тем эффективнее противоопухолевый ответ и тем лучше клинический результат. Таким образом, состояние дифференцировки CAR-T-клеток является ключевым фактором успеха лечения».

Перекрестная связь между метаболизмом и экспрессией генов.

В развернутом виде ДНК , содержащаяся в каждой из наших клеток, будет иметь длину около двух метров. Чтобы поместиться в крошечное ядро ​​клетки, оно конденсируется вокруг белков, называемых гистонами. Чтобы произошла транскрипция гена, определенные участки ДНК должны развернуться, что происходит путем модификации гистонов.

Когда Т-клетки активируются, происходят модификации гистонов, которые, с одной стороны, конденсируют ДНК и предотвращают транскрипцию генов, обеспечивающих долголетие, а с другой стороны, открываются и позволяют транскрипцию генов, управляющих их воспалительной и убийственной функцией. Восстановительное карбоксилирование действует непосредственно на образование метаболитов, небольших химических элементов, которые модифицируют гистоны, влияют на упаковку ДНК и предотвращают доступ к генам долголетия. Его ингибирование поддерживает открытие этих генов и способствует их трансформации в CAR-T долгоживущей памяти.

Скоро клиническое применение?

Ингибитор, используемый учеными для блокирования восстановительного карбоксилирования, представляет собой препарат, уже одобренный для лечения некоторых видов рака. «Поэтому мы предлагаем изменить его положение, чтобы расширить его использование и производить более мощные клетки CART in vitro. Конечно, их эффективность и безопасность нуждаются в проверке в клинических исследованиях, но мы возлагаем очень большие надежды!», — заключают авторы.